Who's in Charge - Solutions for HEV/EV Battery Cell Management

Keith Larson
Marketing Manager, Analog and Power Devices
Keith Larson...

- **Marketing Manager for Analog and Power Products**
 - Support advanced marketing of a full line of analog and power products used in a wide variety of automotive applications, including mixed-signal ICs, power MOSFETs, IGBTs, MOSFET gate drives and intelligent power devices (IPDs).

- **Senior Project Engineer at Delphi Corporation from 1991**
 - Held various assignments spanning many electrical engineering disciplines including manufacturing test, advanced test development, circuit development and analysis and IC architecture and development.
 - Developed breadth of knowledge in various automotive systems including passive crash sensing, body computers, braking, engine and powertrain controllers.
Renesas Technology & Solution Portfolio
Analog and Power Automotive Products

40V-200V in Application Optimized Processes
- Low voltage family optimized for Qgd x Rds(on)
- Separate family optimized for pure Rds(on) performance
- Low RTH packaging technology

650V Discrete Devices
- Class-leading turn-off loss
- High-speed, short-circuit rated, and low Vce(on) optimized
- 200A, 300A & 400A bare die

6-200 mΩ Protected High-side Drivers
- Scalable solutions for exterior lighting, relays, solenoids...
- Ultra-low key-off leakage current performance
- Robust protection against short-circuit conditions

Products Addressing All Major Vehicle Systems
- Crash-sensing chipset for airbag applications
- Powertrain output load drivers, direct gas injection...
- Battery management ICs, MOSFET gate drivers
- Micro-isolator IGBT drivers for high-voltage isolation
- Multi-chip Package devices for switch input and load control
‘Enabling The Smart Society’

■ Challenge:
“The electrification of the automobile brings substantial challenges in it’s goal to contribute to the establishment of the Smart Society as a robust, efficient yet economical alternative to fossil-fuel-derived energy. Among the greatest challenges lies within the management of the single most expensive component of the electrified vehicle, the battery.”

■ Solution:
“Renesas battery management solutions couple high-accuracy performance with exhaustive protection and flexible architectures for optimal battery management systems.”
Agenda

- Introduction to Battery Cell Management
 - The Big Deal about Lithium Ion Battery Packs
 - State of Charge (SOC) vs. State of Health (SOH)
 - Methods for Determining State of Charge (SOC)
 - Balancing Individual Cells to Optimize SOC
 - A Typical Cell Balancing Algorithm*
 - Example of Battery Management System
 - Battery Management System Architectures

- Battery Cell Management: Features of Merit
 - ADC Cell Voltage Measurement Error
 - Battery Stack Cell Voltage Acquisition Time
 - “Hot Plug” Reliability
 - Cell Balancing Methods
 - Diagnostics and Safety
 - Ultra-low Quiescent Current

- Renesas Battery Cell Management Solutions
 - Battery Monitoring IC Market Prediction
 - Major Requirements
 - Roadmap of Battery Monitor IC for HEV/EV
 - The Renesas Advantage in BMS Applications
Introduction to Battery Cell Management
The Big Deal about Lithium Ion Battery Packs

- Charge balance is the crucial performance characteristic of the battery pack
 - Charge imbalance limits the total usable capacity of the battery pack
 - Pack performs to the “lowest common denominator”
 - Charge imbalance can be caused by many factors
 - Variations in manufacturing process
 - Operating conditions, i.e. temperature, etc.
 - Age

- Battery manufacturers take great care to provide a well-balanced battery
 - Cells sorted by manufacturer to reduce variability amongst the cells
 - capacity and internal resistance
 - adds cost to the manufacturing of the battery pack
 - Battery packs still require careful monitoring and balancing to optimize performance due to mismatch reasons noted above
 - Improper balance can lead to over-charging or under-charging, eventually damaging the battery cells
State of Charge (SOC) vs. State of Health (SOH)

State of Charge

- Measure of the capacity of each cell or entire pack
 - Measured in %
 - Equivalent to a fuel gauge
- Cannot be determined by direct measurement
- Absolute Measure
 - Reflects an objective measure of charge remaining in the cell
 - Many methods generally accepted across the industry

State of Health

- Measure of the capability of the pack compared to original specifications
 - Measured in %
 - Figure of merit
- Cannot be determined by direct measurement
- Relative Measure
 - Subjective measure comparing present state to original state
 - No market agreement for determination
Methods for Determining State of Charge (SOC)

- **Direct**
 - Discharge battery at a constant rate
 - Not practical due to changing load current, discharging load current decrease versus age and others

- **Internal Impedance Measurement**
 - Not widely used due to complex measurement and data interpretation

- **Specific Gravity**
 - Measuring the weight of the active chemicals (as in lead-acid)
 - Not suitable to other chemical compositions such as lithium-ion
Methods for Determining State of Charge (SOC)

- **Coulomb Counting**
 - Measures current into or from a cell integrated over time
 - Most accurate method for determining SOC, but cannot predict voltage degradation

- **Voltage-based**
 - Simple and widely used, but varies with temperature, discharge rate, etc.
 - Lead-acid voltage is linear with charge whereas lithium ion is very nonlinear

![Graphs showing open circuit voltage vs. residual capacity and discharge characteristics of 100Ah Li-ion cell. Lead-acid and Lithium ion are labeled.]
Balancing Individual Cells to Optimize SOC

- Passive balancing is used to adjust the state of charge (SOC) to optimize the ability for the battery to provide maximum energy
 - Each cell of the pack (even the lowest) must be allowed to fully charge and discharge to maximum the battery capacity

- Passive balance bleeds charge from higher charged cells
 - Cells are discharged to the lowest common denominator
 - Cell with the lowest capacity sets the bar
 - Power dissipated in heat via an external resistor
 - Lowers the overall efficiency of the battery pack

- Balancing current depends upon many factors
 - Capacity of the cell
 - Time allowed for balancing
 - Expected amount on imbalance
A Typical Cell Balancing Algorithm

- Balancing a group of 6-12 cells begins with a charging cycle
 - Voltage on each cell is measured and stored
 - Lowest cell is identified
 - Charging begins

- Charging cycle ends when one cell reaches the maximum target voltage (or an internal timer expires)
 - Voltage on each cell is again measured and stored

- If the cell with the highest voltage is not the cell that started with the lowest voltage, the cells must be balanced
 - Cell with the lowest voltage becomes the balanced-voltage target value
 - Remaining cells are discharged until they reach the balanced-voltage target value

- The cycle is then repeated as necessary
Example of Battery Management System

- Single battery monitor IC can monitor 6 to 12 cells in series
- Multiple battery monitor ICs are cascaded in series
 - Single MCU can manage the entire string with high-speed serial communications interface
 - Battery Management Unit manages the oversight of the system
Battery Management System Architectures

- Centralized vs Distributed Cell Management Unit (CMU)

Centralized CMU

Pass-through Daisy-Chain Return

Distributed CMU

Fully-buffered Daisy-Chain Return
Battery Cell Management: Features of Merit
ADC Cell Voltage Measurement Error

- Voltage changes are relatively small over the discharge curve and vary with load and temperature

- Voltage measurements are made in a harsh automotive environment
 - Load current transients
 - Electromagnetic interference
 - Voltage transients
 - High common-mode voltages

High accuracy allows for accurate SOC calculations, allowing the battery management system to make full use of the available battery capacity.
Battery Stack Cell Voltage Acquisition Time

- SOC algorithms require a periodic, synchronous sample of all the cells in the battery pack.

- The total acquisition time depends on a number of factors:
 - BMS communications architecture: Distributed vs. Centralized
 - ADC conversion time: Delta-sigma vs. Successive Approximation
 - Number of cells

- Cells must be simultaneously sampled for the most accurate calculation.

- Customers generally require a total acquisition time between 5-10 milliseconds.
“Hot Plug” Reliability

- During vehicle assembly, cell connections from the battery pack to the CMU are made at random, known as “hot plug”
 - Not only between different BMICs in a string, but among any 12 cells of any single BMIC within the string!
- The BMIC must meet stringent voltage and transient requirements in worst case connection scenarios due to sneak paths from external components

Sample of actual OEM test scenarios

- Highest cell on highest IC (e.g. cell 96) is connected first followed by ½ the stack voltage (e.g. cell 48 to system ground), creating a high voltage stress through input filter components and inter-device protection discrete components
- Lowest cell on highest IC (e.g. cell 85) is connected first followed by ½ the stack voltage (cell 48 to system ground), creating a high voltage stress through cell balancing components and inter-device protection discrete components
- Next-to-highest cell on highest IC (e.g. cell 95) is connected first followed by ½ the stack voltage (cell 48 to system ground), creating a high voltage stress through input filter components and inter-device protection discrete components
Cell Balancing Methods

Passive

Active

Flyback

Buck

Buck-boost

Efficiency

Cost
Diagnostics and Safety

- Cell over-voltage and under-voltage
 - Provides fault monitoring to detect ADC fault on voltage measurement
 - Can be combined within the BMIC or in other cases is a stand-alone parallel monitor device (without cell balancing)
 - Assists with diagnosis of open cell input

- Loss of cell input voltage (open-circuit)
 - Open cell voltage input could provide valid A/D result
 - IC must successfully distinguish open-circuit from a dead cell
 - Can’t simply pull up or down on the input

- Cell balance switch status
 - Must verify the on/off capability of the switch

- Loss of VCC or ground
 - Operation is still possible based upon the presence of other cell inputs
Ultra-low Quiescent Current

- Quiescent current
 - Battery monitor IC draws current from battery cells
 - Vehicle is off most of its life, resulting in a constant discharge load
 - Minimizing leakage is paramount!

- Quiescent current variability among BMICs in a string
 - Each BMIC draws current from the cells it monitors
 - Lithium-Ion battery packs are most reliable if the charge and discharge cycles are identical
 - Customers require a balanced load drawn by all the BMICs in the stack
 - Results in a very tight distribution requirement!
Renesas Battery Cell Management Solutions
Roadmap of Battery Monitor IC for HEV/EV

High Speed

- **R2A20027FP**
 - 6 to 12 cell
 - 12-bit SAR ADC
 - +/- 4 mV total error
 - 100 us/96-cell conversion
 - Passive balancing
 - Differential SPI I/F

Higher Accuracy

- **R2A20028FP**
 - 6 to 12 cell
 - 12-bit Delta-sigma ADC
 - +/- 2.5 mV total error
 - 5 ms/96-cell conversion
 - Passive balancing
 - Differential SPI I/F

Under Development

- **R2A200yy**
 - 6 to 12 cell
 - Next Generation ADC
 - < +/- 2 mV total error
 - < 100 us/96-cell conversion
 - Active/Passive balancing
 - High speed communications
 - Integrated digital isolation
 - Next Generation, Under Consideration

Differentiating product features

Merging extensive consumer experience with automotive robustness

2012

2013~

© 2012 Renesas Electronics America Inc. All rights reserved.
Products In Development: R2A20027(28)

- Support for 6 to 12 Cells, up to 80 V
- Low A/D Measurement Error
 - R2A20027: +/- 4 mV\(^1\)
 - R2A20028: +/- 2.5 mV\(^1\)
- High-speed Conversion
 - R2A20027: 100 us\(^2\)
 - R2A20028: 5 ms\(^2\)
- Built-in Cell Balancing MOSFETs for reduced part count and smallest PCB footprint
 - 100 mA max
- Built-in Over/Under voltage detection function
- Differential SPI for Robust Communications
 - CRC>10
- Extensive diagnosis & detection functions to help enable ISO26262 compliance

\(^1\) Ta = 25 C \(^2\) 12 cells
Cell Balancing Methods for R2A20027(28)

Type-A
Separated Balance & Measurement paths

Type-B
Common Balance & Measurement paths

Type-C
Isolated Balancing MOSFET

Voltage Measurement Path
Balancing Current Path
Product Lineup for an Optimal Solution

<table>
<thead>
<tr>
<th>Cell Balancing Option</th>
<th>Packaging</th>
<th>ADC Option</th>
<th>Part Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type-A</td>
<td></td>
<td>12-bit SAR ADC</td>
<td>R2A20027AFP, R2A20027BFP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12-bit DS ADC</td>
<td>R2A20028AFP, R2A20028BFP</td>
</tr>
<tr>
<td>Type-B</td>
<td></td>
<td>12-bit SAR ADC</td>
<td>R2A20027CFP, R2A20027DFP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12-bit DS ADC</td>
<td>R2A20028CFP, R2A20028DFP</td>
</tr>
<tr>
<td>Type-C</td>
<td></td>
<td>12-bit SAR ADC</td>
<td>R2A20027EFP, R2A20027FFP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12-bit DS ADC</td>
<td>R2A20028EFP, R2A20028FFP</td>
</tr>
</tbody>
</table>
Reference Platform

- **Cell Monitor Unit (CMU) Board**
 - R2A20027/28 BMIC\(^1\) and 78K0R/Fx3
 - Isolated connection to 78K0R/Fx3 board
 - SPI connector for daisy-chain connection to a second R2A20027/28 board

- **Load/Battery Module**
 - Design under consideration

- **Battery Management Unit (BMU) Board**
 - V850E2/Fx4 MCU
 - CAN connector for connection to the CMU
 - Cell voltage display
 - Battery charge switch

- **Battery Charger Unit**
 - Control signals available from BMU board for battery charger control

\(^1\) Battery Management IC
The Renesas Advantage in BMS Applications

- Delivering automotive robustness and consumer market leadership in lithium-ion battery cell management applications
- Offering voltage measurement options to meet evolving system architecture requirements
 - SAR for faster stack sampling and low A/D error
 - Delta-sigma for even more accurate A/D performance in less time-critical implementations
- Providing various cell-balancing options to provide greatest flexibility in passive cell balancing systems available on the market
- Integrating passive balancing switches to eliminate dozens of external components and reduce PCB footprint for the lowest system cost
- Utilizing differential SPI to enable a robust, noise-immune communication channel throughout the stack
- Supporting a full suite of built-in diagnostic functions to enable ISO26262 compliance
Questions?
‘Enabling The Smart Society’

Challenge:
“The electrification of the automobile brings substantial challenges in it’s goal to contribute to the establishment of the Smart Society as a robust, efficient yet economical alternative to fossil-fuel-derived energy. Among the greatest challenges lies within the management of the single most expensive component of the electrified vehicle, the battery.”

Solution:
“Renesas battery management solutions couple high-accuracy performance with exhaustive protection and flexible architectures for optimal battery management systems.”

Do you agree that we accomplished the above statement?
Please Provide Your Feedback...

- Please utilize the ‘Guidebook’ application to leave feedback

 or

- Ask me for the paper feedback form for you to use...
Automotive Analog and Mixed-Signal Product Experience

Dashboard
- Gauge Driver
- HVAC Control

Engine Control
- CNG Direct Injection
- MAP Sensor
- Crank Sensor
- Coolant Temp Sensor

Body
- Seat Position Control
- Keyless Entry
- HID Control
- Rain/Light Sensor
- MM-wave Radar
- Sunroof
- Window Lifter
- Steering Switch
- Power Management

Battery Management
- Li-Ion Battery Monitor
- Battery Sensor

Navigation
- Angular Sensor
- Velocity Sensor
- Audio Amp

Safety
- Occupant Sensor
- Rollover Sensor
- Squib Driver
- Satellite Sensor

Brake
- Wheel Speed Sensor
- Pre-driver
- Steering Angle Sensor
- Steering Torque Sensor

Black-ASCPs (Application Specific Custom Product)
Blue-ASSPs (Application Specific Standard Product)
R2A20028FP (Delta-sigma ADC)

- **High voltage:** 80Vmax (available for 12cells)
- **Low measurement error:** +/-2.5mV @25degC
- **High speed measurement:** 10ms max/12degC
- **Reduction external parts:**
 - Built-in cell balancing MOSFET(100mA max.)
 - Built-in Over/Under voltage detection function
- **High reliability I/F:** Differential SPI, CRC>10
- **Various diagnosis/detection functions** to be compliant with ISO26262

Table: Parameters and Target Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Target Spec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring cell number</td>
<td>6 to 12cells (VCC>10V)</td>
</tr>
<tr>
<td>IC addressing</td>
<td>External pin or Command</td>
</tr>
<tr>
<td>Maximum stackable number</td>
<td>External pin: 8ICs, Command: 16ICs (TBD)</td>
</tr>
<tr>
<td>Power supply voltage</td>
<td>10 to 60V (Max. rating voltage: 80V)</td>
</tr>
<tr>
<td>Cell voltage range</td>
<td>0 to 5.0V (VCC>10V)</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>-40 to 105degC</td>
</tr>
<tr>
<td>ADC</td>
<td>12bit resolution Delta-sigma ADC</td>
</tr>
<tr>
<td>Sampling clock frequency</td>
<td>1MHz</td>
</tr>
<tr>
<td>Series regulator</td>
<td>VREG1: 5.0V typ. (for internal communication circuit)</td>
</tr>
<tr>
<td></td>
<td>VREG2: 3.3V typ. (for internal logic circuit)</td>
</tr>
<tr>
<td>Cell voltage measurement error</td>
<td>+/-2.5mV (25degC), +/-5mV (-40 to 105degC)</td>
</tr>
<tr>
<td>ADC conversion time</td>
<td>5ms max./12 cells</td>
</tr>
<tr>
<td>Cell voltage measurement speed</td>
<td>10ms max./12cells (ADC+Communication)</td>
</tr>
<tr>
<td>Power consumption</td>
<td>1.8mA max. (ADC operating) * excluding communication current</td>
</tr>
<tr>
<td></td>
<td>225uA max. (Standby mode)</td>
</tr>
<tr>
<td></td>
<td>10uA max. (Deep sleep mode) (TBD)</td>
</tr>
<tr>
<td>Cell balancing</td>
<td>Method</td>
</tr>
<tr>
<td></td>
<td>Type-A: Not adjacent 6 cells can discharge@100mA max</td>
</tr>
<tr>
<td></td>
<td>Type-B: All adjacent 12cells can discharge@70mA max</td>
</tr>
<tr>
<td></td>
<td>Type-C: All adjacent 12cells can discharge@70mA max</td>
</tr>
<tr>
<td>Timer</td>
<td>Built-in OFF timer (TBD)</td>
</tr>
<tr>
<td>Serial interface</td>
<td>Clock frequency</td>
</tr>
<tr>
<td></td>
<td>1MHz max.</td>
</tr>
<tr>
<td>Interrupt output</td>
<td>2ch (CRC error, ADC completion, Initialization completion)</td>
</tr>
<tr>
<td>Ext. temp. sensor (For thermistor)</td>
<td>2ch (IC addressing: External Pin)</td>
</tr>
<tr>
<td></td>
<td>4ch (IC addressing: Command)</td>
</tr>
<tr>
<td>Chip temp. sensor</td>
<td>1ch</td>
</tr>
<tr>
<td>Self diagnosis function</td>
<td>ADC data register diagnosis and write data verify</td>
</tr>
<tr>
<td></td>
<td>Communication diagnosis (CRC, frame error)</td>
</tr>
<tr>
<td>Detection function for diagnosis</td>
<td>Initialization diagnosis</td>
</tr>
<tr>
<td></td>
<td>ADC diagnosis</td>
</tr>
<tr>
<td></td>
<td>Cell balance diagnosis (Cell balance SW monitor)</td>
</tr>
<tr>
<td></td>
<td>Data register diagnosis (User test mode)</td>
</tr>
<tr>
<td></td>
<td>Open-wire diagnosis</td>
</tr>
<tr>
<td></td>
<td>OCO diagnosis (OCO CLK counter)</td>
</tr>
<tr>
<td></td>
<td>Battery over-voltage/Under-voltage detection</td>
</tr>
<tr>
<td></td>
<td>IC address diagnosis</td>
</tr>
<tr>
<td>Package</td>
<td>Cell balancing Type-A, B: 64pin LQFP</td>
</tr>
<tr>
<td></td>
<td>Cell balancing Type-C: 80pin LQFP</td>
</tr>
</tbody>
</table>

Diagram:

- **Supported 3 types for cell balancing:**
 - VMODE1, 2 (IC addressing: Command)
 - A0-4 (IC addressing: Ext. Pin)
- **Mixed cell balance**
 - 12-bit Δ-σ ADC
- **Control register**
 - SPI
 - CRC
- **Series regulator**
 - VREG1: 5.0V typ. (for internal communication circuit)
 - VREG2: 3.3V typ. (for internal logic circuit)
- **Cell balancing**
 - Type-A: Not adjacent 6 cells can discharge at 100mA max
 - Type-B: All adjacent 12 cells can discharge at 70mA max
 - Type-C: All adjacent 12 cells can discharge at 70mA max
- **Timer**
 - Built-in OFF timer (TBD)
- **Clock frequency**
 - 1MHz max.
- **Interrupt output**
 - 2ch (CRC error, ADC completion, Initialization completion)
- **External temp. sensor (For thermistor)**
 - 2ch (IC addressing: External Pin)
 - 4ch (IC addressing: Command)
- **Chip temp. sensor**
 - 1ch
- **Self diagnosis function**
 - ADC data register diagnosis and write data verify
 - Communication diagnosis (CRC, frame error)
- **Detection function for diagnosis**
 - Initialization diagnosis
 - ADC diagnosis
 - Cell balance diagnosis (Cell balance SW monitor)
 - Data register diagnosis (User test mode)
 - Open-wire diagnosis
 - OCO diagnosis (OCO CLK counter)
 - Battery over-voltage/Under-voltage detection
 - IC address diagnosis

Supported 3 types for cell balancing:

- **VMODE1, 2 (IC addressing: Command)**
- **A0-4 (IC addressing: Ext. Pin)**
- **VMODE1, 2 (IC addressing: Command)**
R2A20027FP (SAR ADC)

- High voltage: 80V max (available for 12 cells)
- Low measurement error: +/- 4mV @ 25 degC
- High speed conversion: 100us max/12 cell
- Reduced external parts:
 - Built-in cell balancing MOSFET (100mA max.)
 - Built-in Over/Under voltage detection function
- High reliability I/F: Differential SPI, CRC >= 10
- Various diagnosis/detection functions to be compliant with ISO26262

Parameter	Target Spec.
Monitoring cell number	6 to 12 cells (VCC > 10V)
IC addressing	External pin or Command
Maximum stackable number	External pin: 8ICs, Command: 16ICs (TBD)
Power supply voltage	10 to 60V (Max. rating voltage: 80V)
Cell voltage range	0 to 5.0V (VCC > 10V)
Operating temperature range	-40 to 105 degC
ADC	12 to 14bit resolution SAR ADC
Series regulator	VREG1: 5.0V typ. (for internal communication circuit)
VREG2: 3.3V typ. (for internal logic circuit)	
Cell voltage measurement error	+/- 4mV (25 degC), +/- 8mV (-40 to 105 degC)
ADC conversion time	100us max./12 cells
Cell voltage measurement speed	5ms max./12 cells (ADC + Communication)
Power consumption	1.8mA max. (ADC operating) * excluding communication current
225uA max. (Standby mode)	
10uA max. (Deep sleep mode) (TBD)	
Cell balancing Method	Type-A: Not adjacent 6 cells can discharge @ 100mA max
Type-B: All adjacent 12 cells can discharge @ 70mA max	
Type-C: All adjacent 12 cells can discharge @ 70mA max	
Timer	Built-in OFF timer (TBD)
Serial interface	Differential SPI (IC-IC: Current mode, MCU-IC: Voltage mode)
* MCU to IC: Differential or Single-end selectable	
Clock frequency	1MHz max.
Interrupt output	2ch (CRC error, ADC completion, Initialization completion)
Ext. temp. sensor (For thermistor)	2ch (IC addressing: External Pin)
4ch (IC addressing: Command)	
Chip temp. sensor	1ch
Self diagnosis function	ADC data register diagnosis and write data verify
Communication diagnosis (CRC, frame error)	
Detection function for diagnosis	Initialization diagnosis
ADC diagnosis	
Cell balance diagnosis (Cell balance SW monitor)	
Data register diagnosis (User test mode)	
Open-wire diagnosis	
OCO diagnosis (OCO CLK counter)	
Battery over-voltage/Under-voltage detection	
IC address diagnosis	
Package	Cell balancing Type-A, B: 64pin LQFP
Cell balancing Type-C: 80pin LQFP	
Cell Balancing Methods

<table>
<thead>
<tr>
<th>Type-A</th>
<th>Type-B</th>
<th>Type-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge path/Measurement path</td>
<td>Discharge path/Measurement path</td>
<td>MOSFET Drain/Source</td>
</tr>
<tr>
<td>Separate type</td>
<td>Common type</td>
<td>Separated type</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum discharge cell (current)</th>
<th>Non-adjacent 6 cells can discharge simultaneously. (100 mA max)</th>
<th>All adjacent 12 cells can discharge simultaneously. (70 mA max)</th>
<th>All adjacent 12 cells can discharge simultaneously. (70 mA max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement During cell balancing</td>
<td>Possible</td>
<td>Impossible to obtain high-accuracy measurement</td>
<td>Possible</td>
</tr>
<tr>
<td>Filtering circuit design</td>
<td>Easy</td>
<td>Complicated (Difficult to consist with discharge current setting)</td>
<td>Easy</td>
</tr>
<tr>
<td>External MOSFET</td>
<td>Drive voltage will be about BCx/2 (Need low voltage drive MOSFET)</td>
<td>Drive voltage will be about BCx</td>
<td>Drive voltage will be about BCx</td>
</tr>
<tr>
<td>Package</td>
<td>64 pin-LQFP</td>
<td>64 pin-LQFP</td>
<td>80 pin-LQFP</td>
</tr>
</tbody>
</table>
Product Lineup for Solution Optimization

- Design options based on a common set of core design features results in a broad product offering
- Choices provided for choosing ADC type, cell-balancing, thermistor inputs and address methods

<table>
<thead>
<tr>
<th>Parts No.</th>
<th>ADC Type</th>
<th>Cell balancing method</th>
<th>Thermistor I/F</th>
<th>Addressing Method</th>
<th>Assigned pin count</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2A20027AFP</td>
<td>SAR</td>
<td>A</td>
<td>2ch</td>
<td>I/O Pin</td>
<td>64</td>
<td>64pin LQFP</td>
</tr>
<tr>
<td>R2A20027BFP</td>
<td></td>
<td></td>
<td>4ch</td>
<td>Software</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>R2A20027CFP</td>
<td></td>
<td>B</td>
<td>2ch</td>
<td>I/O Pin</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>R2A20027DFP</td>
<td></td>
<td></td>
<td>4ch</td>
<td>Software</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>R2A20027EFP</td>
<td></td>
<td>C</td>
<td>4ch</td>
<td>I/O Pin</td>
<td>77</td>
<td>80pin LQFP</td>
</tr>
<tr>
<td>R2A20027FFP</td>
<td></td>
<td></td>
<td>4ch</td>
<td>Software</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>R2A20028AFP</td>
<td>Delta-sigma</td>
<td>A</td>
<td>2ch</td>
<td>I/O Pin</td>
<td>64</td>
<td>64pin LQFP</td>
</tr>
<tr>
<td>R2A20028BFP</td>
<td></td>
<td></td>
<td>4ch</td>
<td>Software</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>R2A20028CFP</td>
<td></td>
<td>B</td>
<td>2ch</td>
<td>I/O Pin</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>R2A20028DFP</td>
<td></td>
<td></td>
<td>4ch</td>
<td>Software</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>R2A20028EFP</td>
<td></td>
<td>C</td>
<td>4ch</td>
<td>I/O Pin</td>
<td>77</td>
<td>80pin LQFP</td>
</tr>
<tr>
<td>R2A20028FFP</td>
<td></td>
<td></td>
<td>4ch</td>
<td>Software</td>
<td>74</td>
<td></td>
</tr>
</tbody>
</table>