Course Introduction

- **Purpose:**
 - This course provides an overview of the Renesas SuperH™ series of 32-bit RISC processors, especially the microcontrollers in the SH-2 and SH-2A series

- **Objectives:**
 - Learn the design concepts behind the SuperH™ series architecture
 - Understand the key features and functions of microcontrollers in the SH-2 and SH-2A series
 - Discover the advantages of devices in the series for a wide range of embedded system applications

- **Content:**
 - 19 pages
 - 3 questions

- **Learning Time:**
 - 20 minutes
SuperH™ Series Basics

- Popular microcontrollers and microprocessors based on the well-established and expanding SuperH™ 32-bit RISC engine architecture

- Architecture design concepts:
 - High performance
 - Upward compatibility
 - High code density
 - Low power consumption
 - Innovative technology

- Highlights of SuperH™ devices:
 - Multiple product lines with different SuperH™ CPU cores
 - High integration with advanced on-chip peripheral functions
 - On-chip flash memory
 - Outstanding features for the price
 - Solid technology roadmap

- Applications:
 - Automotive systems, consumer electronics, communication equipment, industrial control systems, office automation products, among many others
SuperH™ Series CPU Cores

- The choice of an architecture is one of the most important design decisions in the development of an embedded system.
 - SuperH™ cores are available in many different optimized versions.

For high-performance applications and open-OS support:

- SH-4A (266 to 600MHz, Superscalar CPU, FPU)
- SH-4A (266 to 600MHz, Dual Core)
- SH-2A (100 to 200MHz, Superscalar CPU, FPU, Dual Core)

For real-time control applications:

- SH-1 (Up to 20MHz, 32-bit multiplier)
- SH-2 (Up to 200MHz, MMU, Cache)
- SH-3 (Up to 200MHz, Superscalar CPU, FPU)

Maximum performance (please check latest data):

- SH-1: 10 DMIPS (20MHz)
- SH-2: 104 DMIPS (80MHz)
- SH-2A: 480 DMIPS (200MHz)
- SH-3: 260 DMIPS (200MHz)
- SH-4: 430 DMIPS (240MHz)
- SH-4A: 1040 DMIPS (600MHz)
Compatibility, Code Density

- **Upward software compatibility:**
 - Same basic CPU core underlies versions with enhanced instruction sets
 - Extensive processor choices span diverse feature sets and many levels of performance
 - Software reuse makes possible a faster time to market for new designs and upgrades

- **High code density:**
 - 16-bit instruction length typically enables 33% greater code density
 - 16-bit instructions provide double the bus bandwidth; increase cache efficiency; and decrease the need for external memory
Low Power, Innovative Technology

- **Low power consumption:**
 - Design goal is to balance power with performance to achieve excellent MIPS/W ratios
 - Power-saving circuit designs and power-down operating modes boost power efficiency
 - Devices are built with low-power sub-micron CMOS processes

- **Innovative technology:**
 - Advanced design, processing and packaging techniques
 - On-chip flash, peripherals and IP boost functionality, performance and value
 - World-class hardware/software tools make system development easier and more effective
Which statements about the SuperH architecture design are correct? Select all that apply and then click Submit.

- The SuperH family offers code compatibility so that software can be reused across a range of applications.
- Innovative technology such as the integration of complex peripherals enables SuperH products to deliver solutions for many applications.
- Like traditional 32-bit RISC architectures, the devices in the SuperH series only use a full 32-bit Opcode instruction length.
- A 16-bit instruction length doubles bus bandwidth, boosts cache efficiency, and reduces the need for external memory.
Enhanced Features of SH-2A CPU

- Operates at higher frequencies
 - Up to 200MHz now, 300MHz planned
- Is a superscalar design
 - Executes two instructions/cycle for very high throughput
- Uses register banks for fast interrupt response, decreased latency
- Adds instructions that reduce program size and increase efficiency
- Has built-in hardware multiplier-accumulate unit (MAC) for DSP-type operations
Performance Comparison

- **Execution performance**
 - SH-2A at 160MHz is 4.8x faster than SH-2 at 50MHz
 - SH-2A at 200MHz is 6x faster than SH-2 at 50MHz

- **Interrupt switching time**
 - SH-2A processes interrupts in 6 cycles
 - SH-2 processes interrupts in 37 cycles
 - SH-2A switching time at 200MHz is 1/25 that of SH-2 at 50MHz

- **Program code size**
 - SH-2A code is 25% more compact than SH-2 code
Is the following statement about the SH-2A core true or false? Click Submit when you are finished.

“Instruction execution is enhanced by the implementation of a superscalar architecture.”

- True
- False
MPU/MCU Product Roadmap / Microprocessors

Highest Performance General Purpose

<table>
<thead>
<tr>
<th>Series</th>
<th>Model</th>
<th>Clock Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH3-DSP</td>
<td>SH775x</td>
<td>240MHz</td>
</tr>
<tr>
<td>SH4</td>
<td>SH7780</td>
<td>400MHz</td>
</tr>
<tr>
<td>SH4A</td>
<td>SH7785</td>
<td>600MHz</td>
</tr>
<tr>
<td>SH-4 Dual Core</td>
<td>SH7786*</td>
<td>Dual Core 2x SH 4A 533MHz</td>
</tr>
</tbody>
</table>

* under development

Industrial/Ethernet Connectivity

<table>
<thead>
<tr>
<th>Series</th>
<th>Model</th>
<th>Clock Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH3-DSP</td>
<td>SH7710/12/13</td>
<td>200MHz</td>
</tr>
<tr>
<td>SH4</td>
<td>SH7760</td>
<td>200MHz</td>
</tr>
<tr>
<td>SH4A</td>
<td>SH7763</td>
<td>266MHz</td>
</tr>
<tr>
<td>SH4A</td>
<td>SH7764</td>
<td>324MHz</td>
</tr>
</tbody>
</table>

Low Power Multimedia

<table>
<thead>
<tr>
<th>Series</th>
<th>Model</th>
<th>Clock Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH3-DSP</td>
<td>SH7727</td>
<td>160MHz</td>
</tr>
<tr>
<td>SH3-DSP</td>
<td>SH7720/21</td>
<td>133MHz</td>
</tr>
<tr>
<td>SH4A-DSP</td>
<td>SH7722</td>
<td>266MHz</td>
</tr>
<tr>
<td>SH4A-FPU</td>
<td>SH7723</td>
<td>400MHz</td>
</tr>
<tr>
<td>SH4A-FPU</td>
<td>SH7724*</td>
<td>500MHz</td>
</tr>
</tbody>
</table>
MPU/MCU Product Roadmap / Microcontrollers

- SH-2A SH7206 200MHz
- SH-2A SH7201 120MHz
- SH-2A SH7203 200MHz
- SH-2A SH7211 160MHz
- SH-2A SH728/6F 100MHz
- SH-2 SH7147 SH7142 80MHz
- SH-2 SH7146 SH7149 80MHz
- SH-Tiny SH7125 SH7124 50MHz
- SH-2A Dual Core SH7205 2 x 200MHz
- SH-2A SH767x 200MHz
- SH-2A* SH7216F 200MHz

- Romless
- High End
- Mid Range
- Tiny

* Production in Q2/10
SuperH™ 32-bit Microcontroller Lineup

- Optimized for implementing single-chip or minimum-chip embedded systems:
 - Providing performance, power consumption and peripheral functions matched to the needs of important markets:
 - Consumer
 - PC/AV
 - Automotive
 - Industrial
 - Many others

- **SH-2**
 - **SH761x**
 - 176pin
 - 100/125MHz
 - 18 / 19
 - Integrate PHY option
 - Ethernet ROM-less

- **SH-2A**
 - **SH76xx**
 - 256pin
 - 200MHz
 - 05 / 06 / 03 / 01
 - USB + SD interface
 - Ethernet ROM-less

 - **SH720x**
 - 240/176pin
 - 120MHz
 - 85 / 86 / 11 / 16
 - LCD Driver option
 - ROM-less

 - **SH722x**
 - 176/144pin
 - 100-200MHz
 - 85 / 86 / 11 / 16
 - 512k – 1M
 - High End Flash

 - **SH724x**
 - 100pin
 - 100MHz
 - 43
 - 256k
 - Mid End Flash

- **SH71xx**
 - 80/100pin
 - 80MHz
 - 37 / 36 / 47 / 42 / 46 / 49
 - 256k – 512k
 - Mid End Flash

- **SH71xx**
 - 48-64pin
 - 50MHz
 - 25 / 24
 - 32k – 128k
 - SH/Tiny
SH767x

- **SH2A CPU Core**
 - 200MHz = 480DMIPS
 - Superscalar architecture
 - 2 instructions executed per clock tick
 - Integrated FPU

- **On Chip Memory**
 - 32kbytes on chip RAM
 - 16kbytes Cache
 - HIF: 4K dual ported RAM accessible from external host & CPU
 - BSC for external Memory 100MHz 32bit
 - SD Card interface

- **Connectivity**
 - Ethernet MAC 10/100, MII, 512Byte FiFO, EDMA
 - USB 2.0 high speed host or function
 - 1ch IIC
 - 3ch SCIF

- **Timers**
 - CMT – 2ch 16-Bit timer
 - Watchdog Timer

- **Other**
 - 8ch DMA
 - SD Card interface option
 - Encryption Module
 - Serial Sound Interface (SSI)

- **Debug**
 - UBC With 2 break channels
 - H-UDI for JTAG + Boundary scan

- **Digital I/O**
 - 86 I/O pins (+ 8 input only)

- **Power Supply Voltage**
 - 3.3V +/- 0.2V for I/O
 - 1.2V +/- 0.1V for internal

- **Packages**
 - FBGA-256 (17 x 17 mm², 0.8 mm pitch)

- **Temperature Ranges**
 - -20 -> +70 °C
 - -40 -> +85 °C

© 2009, Renesas Technology America, Inc., All Rights Reserved
SH7205

- **2x SH2A CPU Core**
 - 2 x 200MHz = 960DMIPS
 - 2 x 2 instructions executed per clock tick
 - 2 x Integrated FPU

- **On Chip Memory**
 - 96kbytes on chip RAM
 - 16kbytes low-power RAM
 - 2 x 16kbytes Cache
 - BSC for external Memory 66MHz 32-Bit

- **Analogue**
 - ADC: 8ch 10-Bit (3.9µs Conversion time)
 - DAC: 2ch 8-Bit

- **Connectivity**
 - USB 2.0 high speed host or function
 - 2ch CAN
 - 2ch SSU
 - 6ch SCIF
 - 4ch I2C

- **Timers**
 - MTU2 – 5ch 16-Bit timer for Motor Control
 - CMT – 4ch 16-Bit timer
 - Watchdog Timer

- **Other**
 - 14ch DMA
 - 2D engine for (480 × 234) or (320 × 240) + RGB-out

- **Debug**
 - UBC with 2 break channels
 - H-UDI for JTAG

- **Digital I/O**
 - 96 I/O pins (+ 11 input only)

- **Power Supply Voltage**
 - 3.3V +/- 0.3V for I/O
 - 1.2V +/- 0.1V for internal

- **Packages**
 - BGA-272 (17 x 17 mm2, 0.8 mm pitch)

- **Temperature Ranges**
 - -20 -> +85 °C
SH7203

- **SH2A CPU Core**
 - 200MHz = 480DMIPS
 - 2 instructions executed per clock tick
 - Integrated FPU

- **On Chip Memory**
 - 64kbytes on chip RAM
 - 16kbytes low-power RAM
 - 16kbytes Cache
 - BSC for external Memory 66MHz 32-Bit

- **Analogue**
 - ADC: 8ch 10-Bit (3.9us Conversion time)
 - DAC: 2ch 8-Bit

- **Connectivity**
 - USB 2.0 high speed host or function
 - 2ch CAN
 - 2ch SSU
 - 4ch SCIF
 - 4ch IIC

- **Timers**
 - MTU2 – 5ch 16-Bit timer for Motor Control
 - CMT – 2ch 16-Bit timer
 - Watchdog Timer

- **Other**
 - 8ch DMA
 - SD Card interface option (on 7263)

- **Debug**
 - UBC With 2 break channels
 - H-UDI for JTAG
 - Advanced User Debug

- **Digital I/O**
 - 82 I/O pins (+ 16 input only + 1 output only pin)

- **Power Supply Voltage**
 - 3.3V +/- 0.3V for I/O
 - 1.2V +/- 0.1V for internal

- **Packages**
 - LQFP-240 (32 x 32 mm², 0.5 mm pitch)
 - BGA-272 (17 x 17 mm², 0.8 mm pitch)

- **Temperature Ranges**
 - -20 -> +85 °C
SH7216 Series

- **SH2A CPU core**
 - SH-2A (SuperH RISC Engine) Single core
 - FPU (single precision, double precision)
 - 32-bit multiplier (32-bit x 32-bit -> 64-bit)
 - Harvard architecture

- **Operating frequency**
 - CPU: bus/peripheral: 100/200MHz: 50MHz/50MHz

- **Power supply voltage**
 - 3.3V+-0.3V(core,I/O), 5.0V+-0.5V(A/D)

- **On-chip memory**
 - 512KB/768KB/1MB Flash memory
 - 64KB/96KB/128KB RAM (64KB:1 cycle access)
 - 32k Data Flash (R/W 30K :Target) with BGO function

- **External memory interface**
 - SDRAM, Byte-selection SRAM, burst ROM
 - 8-bit, 16-bit and 32-bit

- **Peripheral functions**
 - Multifunction 16-bit PWM timer: 6ch(MTU2), 3ch(MTU2S)
 - Port output enable (POE)
 - 16-bit cycle timer: 2ch
 - Watchdog timer: 1ch
 - I2C bus interface: 1ch
 - USB2.0 function (full speed): 1ch
 - DMA controller: 8ch + DTC
 - 12-bit A/D converter: 4ch x 2 Units
 (1ch supports 3ch simultaneous S/H)
 - SCI: 4ch
 - SCIF: 1ch (16-stage transmit and receive FIFO)
 - JTAG interface
 - RSPI I/F
 - RCAN I/F
 - Ether Net MAC I/F

- **Packages**
 - LQFP176pin (20mm x 20mm 0.4mm pitch)
 - LQFP176pin (24mm x 24mm 0.5mm pitch)
 - BGA176pin (13mm x 13mm 0.8mm pitch)
SH7285 / 7286

- **SH2A CPU Core**
 100MHz = 240DMIPS
 2 instructions executed per clock tick

- **On Chip Memory**
 1M-512kB MONOS Flash
 32-24kB on chip RAM
 BSC for external Memory 50MHz 32-Bit

- **Analogue**
 ADC: 8-12ch 12-Bit (1.0us Conversion time)
 DAC: 0-2ch 8-Bit

- **Connectivity**
 USB 2.0 full speed function
 0-1ch CAN
 1ch SSU
 5ch SCI(F)
 1ch IIC

- **Timers**
 MTU2 – 6ch 16-Bit timer for Motor Control
 MTU2S – 3ch 16-Bit timer for Motor Control
 CMT – 2ch 16-Bit timer
 Watchdog Timer

- **Other**
 8ch DMA
 Data Transfer Controller (DTC)

- **Debug**
 UBC with 2 break channels
 H-UDI for JTAG
 Advanced User Debug

- **Digital I/O**
 91-101 I/O pins (+ 8-12 input only)

- **Power Supply Voltage**
 5.0V +/- 0.5V for Analogue
 5.0V +/- 0.5V OR 3.3V +/- 0.3V for I/O

- **Packages**
 LQFP-176 (20 x 20 mm², 0.4 mm pitch)
 LQFP-176 (24 x 24 mm², 0.5 mm pitch)
 LQFP-144 (20 x 20 mm², 0.5 mm pitch)

- **Temperature Ranges**
 -20 -> +85 ° C
 -40 -> +85 ° C

SH7285, SH7286 block diagram
SH7137 / SH7136

- **SH2A CPU Core**
 - 80MHz
 - 32 x 32 MAC Unit

- **On Chip Memory**
 - 256kB MONOS Flash
 - 16kB on chip RAM
 - BSC for external Memory 40MHz 8-Bit

- **Analogue**
 - ADC: 12 - 16ch 12-Bit
 - 1.25us Conversion time.

- **Connectivity**
 - 3ch SCI(F)
 - 1ch SSU
 - 1ch IIC
 - 1ch CAN

- **Timers**
 - MTU2 – 6ch 16-Bit timer for Motor Control
 - MTU2S – 3ch 16-Bit timer for Motor Control
 - CMT – 2ch 16-Bit timer
 - Watchdog Timer

- **Other**
 - Data Transfer Controller (DTC)

- **Debug**
 - UBC with 2 break channels
 - H-UDI for JTAG

- **Digital I/O**
 - 57-44 I/O pins (+ 16-12 input only)

- **Power Supply Voltage**
 - 5.0V +/- 0.5V for Analogue
 - 5.0V +/- 0.5V OR 3.3V +/- 0.3V for I/O

- **Packages**
 - LQFP-100 (14 x 14 mm², 0.5 mm pitch) (SH7137)
 - LQFP-80 (14 x 14 mm², 0.65 mm pitch) (SH7136)

- **Temperature Ranges**
 - -20 -> +85 °C
 - -40 -> +85 °C
SH7125 / SH7124

- **SH2 CPU Core**
 50MHz
 32 x 32 MAC Unit

- **On Chip Memory**
 16-128kB MONOS Flash
 4-8kB on chip RAM

- **Analogue**
 ADC: 2 x 4ch 10-Bit
 2.0us Conversion time

- **Connectivity**
 3ch SCI(F)

- **Timers**
 MTU2 – 6ch 16-Bit timer for Motor Control
 CMT – 2ch 16-Bit timer
 Watchdog Timer

- **Debug**
 UBC with 2 break channels
 H-UDI for JTAG

- **Digital I/O**
 37-23 I/O pins (+8 input only)

- **Power Supply Voltage**
 5.0V +/- 0.5V

- **Packages**
 QFP-64 (14 x 14 mm², 0.8 mm pitch) (SH7125)
 LQFP-64 (10 x 10 mm², 0.5 mm pitch) (SH7125)
 LQFP-48 (10 x 10 mm², 0.65 mm pitch) (SH7124)
 VQFN-64 (8 x 8 mm², 0.4 mm pitch) (SH7125)
 VQFN-52 (7 x 7 mm², 0.4 mm pitch) (SH7124)

- **Temperature Ranges**
 -20 -> +85 °C
 -40 -> +85 °C
Match each SuperH microcontroller term to its description by dragging the letters on the left to their appropriate locations on the right. Click Submit when you are finished.

SH-2A
Big solutions in small packages for designs that have moderate peripheral and memory requirements

SH/Tiny
Microcontroller family that provide functions for Ethernet connectivity as well as system control tasks

H-UDI
Popular Superscalar 32-bit RISC CPU core that operates at clock speeds up to 200MHz

SH767x
On-chip debugging interface that enables low-cost debugging tools
Course Summary

- SuperH™ family of microcontrollers and microprocessors
- SH-2 microcontroller core and devices
- SH-2A microcontroller core and devices